

DBJ-003-2015001 Seat No. _____

B. Sc. (Sem. V) (CBCS) (W.E.F.-2019) Examination

June - 2022

Math-5(A) : Mathematics

(Mathematical Analysis-1 & Abstract Algebra-1)

Faculty Code: 003

Subject Code: 2015001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions:

- (1) Attempt any five questions.
- (2) Figures to the right indicate full marks of the question.
- 1 (A) Answer the following questions:

4

- (1) Define: Interior point.
- (2) Define: Discrete metric space.
- (3) If (\mathbb{R}, d) is a discrete metric space, then find $N(\pi, 1/2)$.
- (4) If (\mathbb{R}, d) is a usual metric space, then find (0,3)'.
- (B) Attempt the following:

2

- (1) Show that $\mathbb Z$ is closed subset of $\mathbb R$.
- (C) Attempt the following:

3

- (1) Prove that : Any finite subset of a metric space is closed.
- (D) Attempt the following:

5

(1) If (X,d) is a metric space, then show that $d_1: X \times X \to \mathbb{R}; d_1(x,y) = \frac{d(x,y)}{1+d(x,y)} \text{ is a bounded}$

metric on X.

2 (A) Answer the following:

4

- (1) Let $A = \left\{ \frac{1}{2n} \mid n \in \mathbb{N} \right\} \subset \mathbb{R}$. Find \overline{A} .
- (2) Define: Limit point.
- (3) Let (\mathbb{R},d) be a usual metric space. What is in \mathbb{R} ?
- (4) True or False: Let (X, d) be a metric space. Then ϕ is an open set in X.
- (B) Attempt the following:

- 2
- (1) Show that $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, d(x,y) = |\sin x \sin y|$ is not a metric on R.
- (C) Attempt the following:

- 3
- (1) Prove that if (X, d) is a metric space, then $|d(x,z)-d(y,z)| \le d(x,y), \forall x,y,z \in X$.
- (D) Attempt the following:

- 5
- (1) Let X be a metric space and $A, B \subset X$. Show that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- 3 (A) Answer the following:

4

- (1) In usual notation define U(P, f).
- (2) Let $f(x) = x, x \in [0,1]$ and $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of [0,1]. Compute U(P, f).
- (3) Define: Norm of the partition.
- (4) True or False: Every bounded function on [a,b] is *R*-integrable.
- (B) Attempt the following:

2

- (1) State First Mean Value Theorem of Integral Calculus.
- (C) Attempt the following:

3

(1) Using second definition prove that $\int_{1}^{2} 3x dx = \frac{9}{2}$.

(D) Attempt the following:

5

(1) Show that:

$$\lim_{n \to \infty} \left[\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \right] = \log_e 2.$$

4 (A) Answer the following:

4

- (1) In usual notation define L(P, f).
- (2) State Darboux's Theorem.
- (3) True or False : If $fg \in R[a,b]$, then $f \in R[a,b]$ and $g \in R[a,b]$.
- (4) True or False: Let P,P^* be partitions of [a,b] such that $P \subset P^*$. Then $||P^*|| \le ||P||$.
- (B) Attempt the following:

2

(1) Find L(P, f) and U(P, f) for the function

$$f(x) = x^2, x \in [0,1]$$
 and $P = \left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$.

(C) Attempt the following:

3

- (1) If $f \in R[a,b]$ then prove that $f^2 \in R[a,b]$.
- (D) Attempt the following:

5

- (1) If $P_1, P_2 \in [a,b]$, then show that $L(P_1, f) \le U(P_2, f)$.
- 5 (A) Answer the following:

4

- (1) Express $\lim_{n\to\infty} \sum_{r=1}^{n} \left(\frac{2r}{n} + 3\right)$ as definite integral.
- (2) Let f(x) = x for all $x \in [0,1]$. Let $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of [0,1]. Find L(P,f).
- (3) State second mean value theorem of integral calculus.
- (4) True or False: Every R-integrable function on [a,b] is a continuous function on [a,b].

(B) Attempt the following:

- 2
- (1) Prove that $\int_{\underline{a}}^{b} f \, dx \le \int_{a}^{\overline{b}} f \, dx$; where f is real valued function define on [a,b].
- (C) Attempt the following:

3

(1) If $f \in R[a,b]$, then show that

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a),$$

where m and M are the infimum and supermum of f on [a,b], respectively.

(D) Attempt the following:

5

(1) For 0 < a < b, Prove that

$$\frac{\pi^2}{2b} \le \int_0^{\pi} \frac{x}{a\cos^2 \frac{x}{2} + b\sin^2 \frac{x}{2}} dx \le \frac{\pi^2}{2a}$$

6 (A) Answer the following:

4

- (1) Define: Binary Operation.
- (2) For $a,b \in \mathbb{Q}$, define $a*b = \frac{ab}{2}$. What is the identity element for *?
- (3) For $a,b \in \mathbb{Q}$, define $a*b = \frac{ab}{2}$. What is the inverse of 2 ?
- (4) True of False : Subtraction is a commutative binary operation on \mathbb{Z} .
- (B) Attempt the following:

2

- (1) Let (G,\cdot) be a group. Show that the identity in G is unique.
- (C) Attempt the following:

3

(1) Define cancelation laws. Show that cancelation laws holds in a group G.

(D) Attempt the following:

5

(1) Let $M_2(\mathbb{R})$ be the set of all 2×2 matrices over \mathbb{R} . Show that

$$GL(2,\mathbb{R}) = \{A \in M_2(\mathbb{R}) \mid |A| \neq 0\}$$

forms a group with respect to usual matrix multiplication.

7 (A) Answer the following:

4

- (1) Define: Subgroup
- (2) Define: Coset
- (3) Define: Center of the group
- (4) Define: The alternate group A_n
- (B) Attempt the following:

2

- (1) Let (G,\cdot) be a group and $a,b \in G$. Show that $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- (C) Attempt the following:

3

- (1) Answer the following:
 - (a) Give an example of a group having exactly 8 elements.
 - (b) True or False : \mathbb{Z}_6 is a subgroup of \mathbb{Z}_{10} .
 - (c) What is the order of A_5 ?
- (D) Attempt the following:

5

- (1) Let (G, \cdot) be a group. Show that : If $a^2 = e$ for all $a \in G$, then G is abelian.
- **8** (A) Answer the following:

4

- (1) Check whether $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 1 & 3 & 6 & 4 & 2 \end{pmatrix} \in S_7$ is odd or even?
- (2) Let G be a group, $x, y \in G$ and O(x) = 8. If $z = yxy^{-1}$, then $O(z) = \underline{\hspace{1cm}}$.
- (3) If $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 3 & 2 & 6 & 5 & 7 \end{pmatrix} \in S_7$, then find g^{-1} .
- (4) Define: Transposition.

	(B)	Attempt the following	
		(1) Let $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 1 & 3 & 6 & 4 & 2 \end{pmatrix}$,	2
		$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 3 & 2 & 6 & 5 & 7 \end{pmatrix} \in S_7.$	
		Find fg.	
	(C)	Attempt the following:	3
		(1) Let H be a subgroup of a group G . Then show that	
		(a) If $a \in bH$, then $aH = bH$.	
		(b) For $a,b \in G$ show that either $aH \cap bH = \phi$ or	
		aH = bH.	
	(D)	Attempt the following:	5
	(2)	(1) Let H be a subgroup of a group G . For $a,b \in G$ define	
		$a \equiv b \pmod{H} \Leftrightarrow ab^{-1} \in H$. Prove that \equiv is an	
		equivalence relation.	
		•	
9	(A)	Answer the following:	4
,	(Λ)	(1) Define: Cyclic group.	7
		(2) State Lagrange's Theorem.	
		(3) True or False: There exists a group of order 10 having	
		a subgroup of order 4.	
		(4) True or False: Every cyclic group is abelian.	
	(B)	Attempt the following:	2
	` /	(1) Let G be a group and $a \in G$. Define $N(a)$ and show	
		that $N(a)$ is a subgroup of the group G .	
	(C)		3
	(C)	that $N(a)$ is a subgroup of the group G . Attempt the following: (1) Prove that: For $n \ge 3$, every $f \in A_n$ can be express	3
	(C)	that $N(a)$ is a subgroup of the group G . Attempt the following:	3
	` ′	that $N(a)$ is a subgroup of the group G . Attempt the following: (1) Prove that: For $n \ge 3$, every $f \in A_n$ can be express	3

10	(A)	Answer the following:	4
		(1) Define: Normal subgroup.	
		(2) Define: Isomorphism.	
		(3) Define: Quotient group.	
		(4) True or False : $SL(2,\mathbb{R})$ is a normal subgroup of	
		$GL(2,\mathbb{R})$.	
	(B)	Attempt the following:	2
		(1) Show that every subgroup of an abelian group is a normal subgroup.	
	(C)	Attempt the following:	3
		(1) Let H be a normal subgroup of a group G. For $a,b \in G$	
		show that $(aH)(bH) = abH$.	
	(D)	Attempt the following:	5
		(1) State and prove Cayley's Theorem.	